Crystal structure of the catalase-peroxidase KatG W78F mutant from Synechococcus elongatus PCC7942 in complex with the antitubercular pro-drug isoniazid.

نویسندگان

  • Saori Kamachi
  • Kei Hirabayashi
  • Masahiro Tamoi
  • Shigeru Shigeoka
  • Toshiji Tada
  • Kei Wada
چکیده

Isoniazid (INH) is a pro-drug that has been extensively used to treat tuberculosis. INH is activated by the heme enzyme catalase-peroxidase (KatG), but the mechanism of the activation is poorly understood, in part because the INH binding site has not been clearly established. Here, we observed that a single-residue mutation of KatG from Synechococcus elongatus PCC7942 (SeKatG), W78F, enhances INH activation. The crystal structure of INH-bound KatG-W78F revealed that INH binds to the heme pocket. The results of a thermal-shift assay implied that the flexibility of the SeKatG molecule is increased by the W78F mutation, allowing the INH molecule to easily invade the heme pocket through the access channel on the γ-edge side of the heme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2.2 Å resolution structure of the catalase-peroxidase KatG from Synechococcus elongatus PCC7942.

The crystal structure of catalase-peroxidase from Synechococcus elongatus PCC7942 (SeKatG) was solved by molecular replacement and refined to an Rwork of 16.8% and an Rfree of 20.6% at 2.2 Å resolution. The asymmetric unit consisted of only one subunit of the catalase-peroxidase molecule, including a protoporphyrin IX haem moiety and two sodium ions. A typical KatG covalent adduct was formed, M...

متن کامل

Virulence in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from south India

Isoniazid, is the only antituberculous drug for which the relation between lack of virulence and acquisition of resistance was associated. INH-resistant mutants were shown to contain defective katG gene. Classical studies showed that INH-resistant south Indian isolates have lower virulence in guinea pigs and higher susceptibility to H2O2. It is of interest to assess the virulence in south India...

متن کامل

Reduced affinity for Isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance.

Catalase-peroxidase (KatG) from Mycobacterium tuberculosis is responsible for the activation of the antitubercular drug isonicotinic acid hydrazide (INH) and is important for survival of M. tuberculosis in macrophages. Characterization of the structure and catalytic mechanism of KatG is being pursued to provide insights into drug (INH) resistance in M. tuberculosis. Site-directed mutagenesis wa...

متن کامل

Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production.

Mycobacterium tuberculosis KatG catalyzes the activation of the antitubercular agent isoniazid to yield an inhibitor targeting enoyl reductase (InhA). However, no firm biochemical link between many KatG variants and isoniazid resistance has been established. In the present study, six distinct KatG variants identified in clinical Mycobacterium tuberculosis isolates resistant to isoniazid were ge...

متن کامل

Exploring the structure and function of the mycobacterial KatG protein using trans-dominant mutants.

In order to probe the structure and function of the mycobacterial catalase-peroxidase enzyme (KatG), we employed a genetic approach using dominant-negative analysis of katG merodiploids. Transformation of Mycobacterium bovis BCG with various katG point mutants (expressed from low-copy-number plasmids) resulted in reductions in peroxidase and catalase activities as measured in cell extracts. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 589 1  شماره 

صفحات  -

تاریخ انتشار 2015